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This research originates in a try to understand spin-orbit effect in superconductors. Since
a few years, there have been growing interests in this kind of interaction, mainly in order
to generate the so-called topological effect in superconductors and the unpaired Majorana
modes in superconducting wires (Franz, 2013; Wilczek, 2009). Nevertheless, this rush to-
wards topological effect might have forgotten several interesting aspects of the association of
spin-orbit and spin-splitting (i.e. Zeeman interaction) effects in superconductor phenomenol-
ogy. This presentation is dedicated to such an attempt.

I will discuss the gauge-covariant transport formalism, a novel tool to put the spin-orbit
effect into some semi-classic limit in a systematic way. I then apply this formalism to the
study of a Josephson junction and discuss two distinct regimes in this system. The first one
can be seen as existing in short junction only. I will show how the spin texture modifies
the (quasi-classic) Green function in term of a spin holonomy due to the perfect Andreev
reflections. For longer junctions, a spin-Hall like effect starts to be of importance. The spin-
Hall and reverse spin-Hall (generation of a spin polarization induced by a charge current and
the generation of a charge current due to the spin-polarization) then conspire to generate a
static, equilibrium charge current in a Josephson junction. It results a magneto-electric ϕ0

phase-shift proportional to the spin-orbit and spin-splitting effects.
The slides accompanying this talk can be found on my personnal webpage.

∗URL: http://fraschelle.free.fr
†URL: http://cfm.ehu.es/mesoscopics/

http://fraschelle.free.fr/pdf/2015-12-1.pdf
http://fraschelle.free.fr
http://cfm.ehu.es/mesoscopics/


2

I. GAUGE-COVARIANT TRANSPORT FORMALISM

The usual transport formalism consists in an expansion of the Green function from the
quantum-field-theory to the low-energy sector of the phase-space, using a Wigner transform

G (p, x) =

∫
dz
[
e−ip·z/~G

(
x− z

2
, x+

z

2

)]
(1.1)

where the two point-correlator G (x1 = x− z/2, x2 = x+ z/2) on the right-hand-side is con-
verted to a one-point correlator in the phase space G (p, x) via a partial Fourier trans-
formation of the relative coordinate, then keeping the center-of-mass coordinate and the
momentum as variables. When truncated at order O (~2) for instance, the Fourier trans-
form is called a semi-classic expansion. The equation for G (p, x) at this order is called the
transport equation, see (Rammer and Smith, 1986).

For system with spin-orbit interaction, though, the Hamiltonian reads (in the case of
Rashba spin-orbit interaction and a quadratic band dispersion below)

H =
p2
x

2m
+

p2
y

2m
− µ+ h · σ + vso(σ × p) · ẑ

=
(px −mvsoσy)

2

2m
+

(py +mvsoσx)
2

2m
− µ̃+ A0 (1.2)

with h · σ the exchange (Zeeman) interaction, px,y the 2D momentum, and vso the velocity
associated to the spin-orbit interaction. The difficulty – as seen in the first line above –
is the p-dependent component of the Hamiltonian, which is now intrinsically dressed by a
spin texture, see vso(σ × p) · ẑ. Nevertheless – see the second line – one can rewrite this
Hamiltonian in the form of a gauge-covariant one, when the spin-orbit interaction is seen as
a gauge-potential

A = ξ−1
so (−σy, σx, 0) ; ξso = ~/mvso (1.3)

in this example. This rewriting just renormalizes the chemical potential µ̃ = µ + mv2
so/2

in the example of Rashba spin-orbit interaction for free electrons. Note that A is in fact
a vector in the real space (noted with lower indices) Ax = −ξ−1

so σy, Ay = ξ−1
so σx but also a

vector in the spin-space (noted with upper index) Axx = −Axy = ξ−1
so . Then the Hamiltonian

reads H = (p+A)2 /2m − µ̃ + A0, where A0 = h · σ represents the spin-splitting effects
(i.e. Zeeman interaction), seen as the time-sector of the gauge-potential (A0 is a scalar in
the real space, and a vector in the spin-space Ax0 = hx, ...).

Now we can promote the simple rewriting above as a recipe for the spin interaction. In
this situation, the spin is seen as a redundant degree of freedom, which can be rotated inde-
pendently at different points of the space. It means in particular that the gauge-covariance
(seen as a position dependent spin-rotation R (x)) for the Green function reads

G (x1, x2)→ R (x1)G (x1, x2)R† (x2) (1.4)

, i.e. it can be done differently for the initial x1 and final point x2 of the correlator. When
injected into the Wigner transform (1.1), the gauge-covariance is broken due to the Fourier
transform of the relative coordinate z. Since we promote the gauge-covariance as a general
principle of the dynamics of our system, one needs a gauge-covariant Wigner transform,
which in fact reads

G (p, x) =

∫
dz
[
e−ip·z/~U

(
x, x− z

2

)
G
(
x− z

2
, x+

z

2

)(
x+

z

2
, x
)]

(1.5)
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with the parallel displacement operation

U (b, a) = Pexp

[
−i
∫ b

a

dzµAµ (z)

]
(1.6)

guaranteeing that G (p, x)→ R (x)G (p, x)R† (x) transforms as a single point operation un-
der a gauge transformation. The cost for maintaining the gauge-covariance is the introduc-
tion of the path-ordered displacement operator U from the relative coordinate x1 = x− z/2
back to the center-of-mass one x before taking the Fourier averaging into account.

An other important aspect of the formalism is the gauge-invariance of the BCS Hamilto-
nian with respect to a gauge-transform (= a spin rotation). This is true only for the s-wave
superconductivity, when the Cooper pairs have singlet symmetry in spin. SO the transport
method applies only straighforwardly to an s-wave superconductor with linear-in-momentum
spin-orbit interaction.

Equipped with the gauge-covariant Wigner transform, one can write some gauge-covariant
transport equation using standard procedure (Konschelle, 2014). One obtains (the check ˇ· · ·
on top of the quantity represents the Nambu space, or electron-hole redundancy of the
theory)

− i
pi
m
∇̃iǦ+

[
τ3 (ω + A0) + ∆̌, Ǧ

]
+

i

2

{
τ3F0j + viFij,

∂Ǧ

∂pj

}
=

[
i 〈ǧ〉
2τ

, Ǧ

]
(1.7)

with a covariant derivative

∇̃iǦ =
∂Ǧ

∂xi
+ i
[
Ǎi, Ǧ

]
(1.8)

keeping track of the spin-orbit interaction and its gauge interpretation, τ the mean free
time between two (spinless) impurity, 〈· · · 〉 some angular averaging in the momentum space
(equivalently 〈ǧ〉 is a kind of a Boltzmann integral/collision term), ∆̌ is the gap parameter,
obtained self-consistently from the semi-classic Green function Ǧ (p, x), and

Fαβ =
∂Aα
∂xβ

− ∂Aβ
∂xα

− i [Aα, Aβ] (1.9)

is the gauge-field. The last term in Fαβ disappears only in the Abelian case, when Aα are
vectors in the real space only, and not vectors in both the real and spin spaces. F0i is called
the electric-like field, and Fij is called the magnetic-like field.

An extra approximation can be used in metal when the Fermi energy is far larger than
the superconducting gap: EF � ∆. It consists in supposing all the energies to be essentially
fixed at the Fermi one, and to neglect the variation far away from EF . Then one can define
a ε = vF (p− pF ) integration of the energies (ΩF is the angle in the momentum space, now
fixed on the Fermi surface, since ε is only the radial direction)

ǧ (pF ,ΩF , x) =

∫
idε

π
Ǧ (p, x) (1.10)

for which the equation is

− ivF

(
ni∇̃i

)
ǧ +

[
τ3 (ω + A0) + ∆̌, ǧ

]
+

i

2m

{
niFij,

∂ǧ

∂nj

}
=

[
i 〈ǧ〉
2τ

, ǧ

]
(1.11)
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with pi/m = nivF . This last equation is a generalized Eilenberger equation or quasi-classic
transport equation, which allows to describe spin-orbit (in the gauge-covariant derivative and
spin-splitting (the time-sector A0) interactions in the presence of superconducting correlation
∆̌ and impurities 〈ǧ〉 /2τ =

∫
ĝdΩF/2τ . It is in principle self-consistent in ∆̌ and impurities.

At this level of approximation, the electric-like field disappears, see details in (Konschelle
et al., 2015). We will see in section III that the magnetic-like field Fij is responsible for the
anomalous phase-shift in long enough junctions.

II. JOSEPHSON JUNCTION WITH MAGNETIC TEXTURE

We now discuss Josephson system using the Eilenberger equation (1.11). The Josephson
junction is made of two superconducting regions connected via a normal one. The normal
region has no superconducting gap ∆̌ = 0 there and magnetic interactions described by
A0 and n ·A (in the covariant derivative). There is no magnetic interaction in the super-
conductors. When the normal region is ballistic, one has τ → ∞. In addition for a short
junction (this hypothesis will be justified a posteriori, at the end of section (1.11)) one can
suppose Fij → 0.

A Josephson junction is characterized by the phenomenology of the Andreev reflection,
when an incident electron at an interface between a normal and a superconducting region is
reflected back as a hole. It results a loop in a composite space made of the junction length
and the Nambu space. Along the Nambu space, the space is discrete, since it consists only
on positive and negative discrete charge which are interchanged via an Andreev reflection.
Then starting at any point in the normal region, an electron will hit one interface where it
will be reflected back as a hole, propagating in the other direction toward the other interface
where it is transmuted as an electron again via a second Andreev reflection. It then comes
back to its initial position after completing a so-called Andreev-Wilson loop.

When one wants to describe some spin effects, one can add an extra dimension to the
Andreev-Wilson loop. When traveling across the junction, the complicated spin-structure
might induce an amazingly complicated spin-dynamics. Nevertheless, the dynamics is con-
strained by the restriction of the loop: the particle must necessarily end-up in the same state
(electron or hole) and at the same position as the initial ones. Then the initial and final
spins can be compared. However complicated could the spin dynamics be, the comparison
of the initial and final spin states can be described by two parameters, which are the angle
Φ of the resulting rotation between the initial and final spin directions, and the vector n
around which the rotation is performed. So the Andreev-Wilson loop in the junction will
give an extra contribution W = ei(n·σ)Φ due to the spin effects.

To verify that the above simple analysis gives indeed the complete description of the
spin-interaction, we calculated the Green function in the quasi-classic approximation. It
reads

g = − i

2

∑
α=±

(1 + α (n (s) · σ)) tan

(
ωL

vF
+ arcsin

ω

∆
+
ϕ

2
+ α

Φ

2

)
(2.1)

giving the spectrum of Andreev-bound states (the poles of the Green function)

ωL

vF
+ arccos

ω

∆
± ϕ

2
± Φ

2
= nπ (2.2)

where L is the length of the junction. There are four branches ±ϕ and ±Φ, with Φ the
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angle associated to the complicated spin-dynamics induced by the propagators

u (s2, s1) = Pexp

{
−i
∫ s2

s1

(A0 + vF (n ·A)) ds

}
(2.3)

writen in terms of a path-ordered integral. The complete loop reads

W (s) = u (s, sR) ū (sR, sL)u (sL, s) = ei(n·σ)Φ (2.4)

with an electronic propagation from position s to the left interface at position sL, then a
hole-propagation given by the time-reversal ū from the left to the right interface at position
sR and finally back to the initial point following an electronic propagation u (s, sR) from the
right interface. Note that the angle appearing in the spectrum is defined as

2 cos Φ = Tr
{
ei(n·σ)Φ

}
= Tr {u (sL, sR) ū (sR, sL)} (2.5)

and is thus position independent. In contrary, the vector n depends on the position, and
can be seen as the axis around which the spin precesses along the junction.

In a pure mono-domain superconducting-ferromagnetic Josephson junction, one simply
has Φ ∝ 2hL/vF , the phase-shift associated to the exchange field h.

Since the u’s are path-ordered exponentials, one can not calculate them in general. Nev-
ertheless, one realizes that the Josephson junction is in fact calculating this complicated
expression by itself. Then, if one is able to records the density-of-state, one can have an
access to the angle Φ. The vector n gives the full spin-structure of the Green-function. If
one is able to measure the spin-polarized density of state, one will have a measure of this
vector, and thus of the full mathematical object W . Then a Josephson junction is nothing
but an analog computer of Wilson loop and path-ordered Dyson’s series.

One can generalize a bit the spectrum, supposing a scattering region inside the junction,
with transmission coefficient T = 1−R. One obtains then

cos

(
2ωL

vF
+ αΦ + 2 arcsin

ω

∆

)
+ T cosϕ+R cos

(
2ωL

vF
+ αΦ

)
= 0 (2.6)

as the condition for the spectrum. We focus again in the short junction limit, when ωL/vF →
0 (but keeping the Φ-term, even if it’s a bit inconsistent since Φ ∝ L as well) When T → 0,
one obtains the pure ballistic limit, when the energies are degenerate at high-symmetry
points, for instance when ϕ = π ± Φ. These degeneracies are usually split by lowering
the transparency T . Nevertheless, for a peculiar value Φ = π/2, the degeneracies do not
disappear, and one is left with quasi-zero energy Andreev-bound states at low transparency.
The other degeneracy between ↓ and ↑ spin projection is always lifted by lowering the
transparency. One of the spin-projection always goes to the bulk energy ω → ±∆ at low
transparency of the junction.

III. ANOMALOUS PHASE SHIFT AND MAGNETO-ELECTRIC RESPONSE

All section II was dedicated to the short junction limit, when the gauge-field in the
Eilenberger equation can be safely neglected. We now explore the phenomenology associated
to the gauge-field. In fact, from the Abelian limit (the usual Maxwell electromagnetism)
one can infer many of this phenomenology.
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For instance, we retained only the magnetic-like effect. In the Abelian Maxwell formalism,
the magnetic field essentially tilts the electrons trajectories, which results in the Hall physics,
when a current generates a charge accumulation in the transverse direction when a magnetic
field is applied. Here in the non-Abelian generalization, one still expects some kind of
tilted trajectories. This is the reason why a short enough junction will not exhibit the
phenomenology of the gauge-fields, since the trajectories are correctly approximated by
straight lines in this limit (one can talk of trajectories only in the ballistic limit, in the
diffusive limit the argument is a bit different, but still the gauge-field is of higher order
correction in the parameter τ , the mean free time, than the spin-splitting A0 and spin-orbit
A effects).

We also expect some kind of Hall-like phenomenology associated to the gauge-field. Since
we have the non-Abelian version related to the spin effects of the gauge-theory, one expects
that a spin-texture may generate spin-current, that spin-current induce spin-polarization,
and that spin and charge effects will combine in some magneto-electric response.

For instance, if one starts with a bare charge and we let it propagate along the magnetic
junction, it will first be dressed with a spin (i.e. it will acquire a spin polarization). At a little
bit longer junction, the spin-orbit effect will start dressing the particle with a spin-texture,
intrinsically momentum dependent. Next the gauge-field enters the stage, and collapses all
these effects in order to generate a momentum (recall the Lorentz-like force appears with
a momentum derivative in the transport equation). This momentum generation by a spin-
orbit coupling and spin-dressing is called an inverse Edelstein effect, when a charge current is
generated by a spin-polarization. In a Josephson junction, it is responsible for the generation
of a spontaneous current at zero-phase difference. Equivalently it generates a current-phase
relation with an anomalous phase-shift ϕ0:

j = jc sin (ϕ− ϕ0) (3.1)

where the phase-shift is proportional to the spin-current Jax and the spin-polarization Aa0:

jx (ϕ = 0) ∝ −eπN0vF
EF

L3

3
∆2TcF

a
xiF

a
i0 (3.2)

with Tr {FxkFk0} = JaxA
a
0.

Usually this phase shift is difficult to measure, since in general the phase-difference adapts
such that ϕ = ϕ0 and no current should flow for single junction geometry. But one can design
interference experiments when the phase-shift can be tuned and measure.

Many more details can be found in (Konschelle et al., 2015). In particular, we here focused
on the ballistic limit, but the ϕ0 effect is in fact inherent to the presence of spin-orbit and
spin-splitting effects. We calculated the magneto-electric anomalous phase shift for both the
ballistic and diffusive limits, and for different interface transparency to prove it is a robust
effect of generic appearance.
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